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GHZ States

Greenberger, Horne and Zeilinger(GHZ) studied what
might happen if more than two particles are entan-

gled [2]. Such states in which 3 parties are entangled

1
GHZs,) = \ﬁ (]000) + |111))

were observed, rejecting local-realistic theories [1, 10].

GHZ states have cryptographic applications in the
Quantum Byzantine agreement and are also used in
the communication protocols in Distributed quantum
computing [6]. Increasing the number of particles in-
volved and the dimension of the GHZ state is essen-
tial both for foundational studies and practical appli-
cations. A huge effort is being made by several exper-
imental groups around the world to push the size of
GHZ states. Photonictechnology is one of the key tech-

nologies used to achieve this goal [5].

The Graph Theory Connection

In 2017, Krenn et al. [9, 4, 3] discovered a previously
hidden bridge between such quantum optical exper-
iments to create high dimensional GHZ states and
graph theory. The question "Can high-dimensional
GHZ states be created through quantum optical ex-
periments with probabilistic photon sources and linear
optics?” reduces to asking if there are edge-coloured
edge-weighted graphs with certain properties.

|2

Correspondence between experiment and graph

Perfectly Monochromatic Graphs

Weight of a Perfect Matching: The weight of a perfect
matching is defined as the product of the weights of
the edges.

Weight of a Vertex Colouring: The weight of a vertex
colouring is defined as the sum of the weights of the
perfect matchings which induce the vertex colouring.

Perfectly Monochromatic Graph: We say that an edge-
coloured edge-weighted graph is perfectly monochro-
maticif the weight of all monochromatic vertex colour-
ings is 1 and the weight of all non-monochromatic ver-
tex colourings is 0.

Matching Index: For a simple graph G, the match-
ing index u(G) is the maximum number of differ-
ent colours for which there are monochromatic vertex
colourings with weight 1 over all perfectly monochro-
matic multigraphs with G as the underlying simple

graph.
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Perfectly Monochromatic Graph

Krenn’s Conjecture: 1(K,) = 3 and for a graph G which
is non-isomorphicto K, u(G) < 2.

Destructive Interference

When thereis no destructive interference, the problem
reduces to finding edge-coloured graphs where all per-
fect matchings are monochromatic. Due to a result by
Bogdanov [9], we know that except for K, all graphs

can have unweighted matching i index at most 2. The
unweighted matching index of K is 3.

//

FaN
> WL

Bogdanov’s proof

Based on this we can classify graphs into 4 types de-
pending upon whether their unweighted matching in-
dex is 0, 1, 2 or 3. It is interesting to ask if destructive
interference helps in each of these cases.

It 4(G) =0, w(G) =0

If 1(G) = 1, u(G) need not be 1. It is unknown whether

Perfect Matchings and Quantum Physics

it can go above 2

If u(G) = 3, G = K4 u(K,) = 3. This was proved by
Kevin [7] using Groebner bases. This was a computer
proof.

Our Results

We gave a complete structural characterisation of
graphs corresponding to experiments which create
GHZ states of dimension 2 without destructive inter-

ference

Structure of graphs with g = 2

We showed that even with destructive interference
these graphs can create GHZ states of dimension at

most 2
If (G) =2, W(G) =2

In view of our results, Krenn’s conjecture remains open

only for graphs with i =1
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