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GHZ States
Greenberger, Horne and Zeilinger(GHZ) studied what
might happen if more than two particles are entan-
gled [2]. Such states in which 3 parties are entangled

|GHZ3,2⟩ =
1√
2
(|000⟩ + |111⟩)

were observed, rejecting local-realistic theories [1, 10].

GHZ states have cryptographic applications in the
Quantum Byzantine agreement and are also used in
the communication protocols in Distributed quantum
computing [6]. Increasing the number of particles in-
volved and the dimension of the GHZ state is essen-
tial both for foundational studies and practical appli-
cations. A huge effort is being made by several exper-
imental groups around the world to push the size of
GHZ states. Photonic technology is oneof the key tech-
nologies used to achieve this goal [5].

The Graph Theory Connection
In 2017, Krenn et al. [9, 4, 3] discovered a previously
hidden bridge between such quantum optical exper-
iments to create high dimensional GHZ states and
graph theory. The question ”Can high-dimensional
GHZ states be created through quantum optical ex-
perimentswith probabilistic photon sources and linear
optics?” reduces to asking if there are edge-coloured
edge-weighted graphs with certain properties.

Correspondence between experiment and graph

PerfectlyMonochromaticGraphs
Weight of a Perfect Matching: The weight of a perfect
matching is defined as the product of the weights of
the edges.

Weight of a Vertex Colouring: The weight of a vertex
colouring is defined as the sum of the weights of the
perfect matchings which induce the vertex colouring.

PerfectlyMonochromatic Graph: We say that an edge-
coloured edge-weighted graph is perfectly monochro-
matic if theweightof allmonochromatic vertex colour-
ings is 1 and theweight of all non-monochromatic ver-
tex colourings is 0.

Matching Index: For a simple graph G, the match-
ing index µ(G) is the maximum number of differ-
ent colours for which there are monochromatic vertex
colourings with weight 1 over all perfectly monochro-
matic multigraphs with G as the underlying simple
graph.
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Perfectly Monochromatic Graph

Krenn’s Conjecture: µ(K4) = 3 and for a graphGwhich
is non-isomorphic toK4, µ(G) ≤ 2.

Destructive Interference
When there is nodestructive interference, the problem
reduces to finding edge-coloured graphswhere all per-
fect matchings are monochromatic. Due to a result by
Bogdanov [9], we know that except for K4, all graphs
can have unweightedmatching µ̄ index at most 2. The
unweighted matching index ofK4 is 3.

Bogdanov’s proof

Based on this we can classify graphs into 4 types de-
pending uponwhether their unweightedmatching in-
dex is 0, 1, 2 or 3. It is interesting to ask if destructive
interference helps in each of these cases.

If µ̄(G) = 0, µ(G) = 0

If µ̄(G) = 1, µ(G) need not be 1. It is unknownwhether

it can go above 2

If µ̄(G) = 3, G = K4. µ(K4) = 3. This was proved by
Kevin [7] using Groebner bases. This was a computer
proof.

Our Results
We gave a complete structural characterisation of
graphs corresponding to experiments which create
GHZ states of dimension 2 without destructive inter-
ference

Structure of graphs with µ̄ = 2

We showed that even with destructive interference
these graphs can create GHZ states of dimension at
most 2

If µ̄(G) = 2, µ(G) = 2

In view of our results, Krenn’s conjecture remains open
only for graphs with µ̄ = 1
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